Midsemestral examination 2014 M.Math. II — Commutative algebra Instructor — Pratyusha Chattopadhyay

Throughout R stands for a commutative ring with $1 \neq 0$.

Q 1.

(a) Let R[X] be the polynomial ring in one variable. Show that R[X] is an integral domain if and only if R is an integral domain.

(b) Let R be a ring in which every element a has some power $a^{n(a)} = a$ with n(a) > 1. Show that all prime ideals of R must be maximal.

(c) Let I_1, I_2, \ldots, I_n be ideals of R and p be a prime ideal of R such that $p = \bigcap_{i=1}^n I_i$. Show that $p = I_j$ for some j.

Q 2.

(a) Let M be a module over a local ring (R, m) and $x_1, x_2, \ldots, x_n \in M$. Show that if images of x_1, x_2, \ldots, x_n in M/mM generate M/mM over R/m, then x_1, x_2, \ldots, x_n generate M.

(b) Let *M* be an *R*-module and *N*, *P* be submodules of *M*. Show that $(N : P) = Ann(\frac{N+P}{N}).$

(c) Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime.

Q 3.

(a) Determine whether $\mathbb{Z}/n\mathbb{Z}$ is flat as \mathbb{Z} -module for $n \geq 2$.

(b) Let M_{α} be a family of *R*-module, where α belongs to some indexing set Λ . Let $M = \bigoplus M_{\alpha}$. Show that M is flat *R*-module if and only if each M_{α} is flat.

(c) Let M and N be two R-modules. Show that if M and N are faithfully flat, then $M \otimes_R N$ is faithfully flat.

Q 4.

(a) Let A be a faithfully flat R-algebra and M be an R-module. If $A \otimes_R M$ is finitely generated over A, then show that M is finitely generated over R. (b) Let P, Q be finitely generated R-modules with P projective and J = rad(R). Let $\gamma \in Hom(Q, P)$ and bar denote deduction modulo J. If $\overline{\gamma} : \overline{Q} \longrightarrow \overline{P}$ is an isomorphism, show that γ is an isomorphism.

Q 5.

(a) Let M be an R-module and I be an ideal of R such that $M_m = 0$ for all maximal ideals m containing I. Show that M = IM.

(b) Let S be a multiplicatively closed set of R and I be an ideal of R. Show that $S^{-1}r(I) = r(S^{-1}I)$. Here r(I) means radical of the ideal I.

Q 6.

(i) Let q be a p-primary ideal of R and $x \in R$. Show that if $x \notin q$, then (q:x) is p-primary.

(ii) Let I be an ideal of R and let $I = \bigcap_{i=1}^{r} q_i$ be a minimal primary decomposition of I with $r(q_i) = p_i$. Show that for each i there exists $x_i \in R$ such that $(I : x_i)$ is p_i -primary.